Thursday, March 29, 2012

Much faster than a speeding bullet, planets and stars escape the Milky Way

Much faster than a speeding bullet, planets and stars escape the Milky Way [ Back to EurekAlert! ] Public release date: 29-Mar-2012
[ | E-mail | Share Share ]

Contact: Joseph Blumberg
joseph.e.blumberg@dartmouth.edu
603-646-2117
Dartmouth College

Idan Ginsburg, a graduate student in Dartmouth's Department of Physics and Astronomy, studies some of the fastest moving objects in the cosmos. When stars and their orbiting plants wander too close to the supermassive black hole at the center of the Milky Way, their encounter with the black hole's gravitational force can either capture them or eject them from the galaxy, like a slingshot, at millions of miles per hour.

Although their origin remains a mystery and although they are invisible, black holes found at galaxy centers make their presence known through the effects they have on their celestial surroundings. The Milky Way's black hole, a monster with a mass four million times that of the Sun, feeds on some of its neighbors and thrusts others out into the intergalactic void.

It's the expelled objects that "become hypervelocity planets and stars," say Ginsburg. "What we learn from these high-speed travelers has significance for our understanding of planetary formation and evolution near the central black hole."

Ginsburg, along with his doctoral adviser Professor Gary Wegner, and Harvard Professor Abraham Loeb are publishing a paper in the Monthly Notices of the Royal Astronomical Society. It describes how the team constructed computer simulations of these hypervelocity bodies as a means to understanding the dynamics involved. "The paper is a 'call to arms' for other astronomers to join the search," Ginsburg announces.

Born in Israel, Ginsburg came to the United States as a child and grew up as a Midwesterner. After high school in Lawrence, Kan., graduating from the University of Illinois at Urbana-Champaign, and studies at Harvard, Ginsburg came to Dartmouth almost five years ago.

For the origin of hypervelocity bodies, Ginsburg and his colleagues point to the close interaction of a binary star systemtwo stars orbiting a common centerwith a massive black hole. The likely scenario is the black hole draws one of the pair into its gravitational well while simultaneously ejecting the other at 1.5 million miles per hour. More than 20 of these hypervelocity stars have been identified in the Milky Way.

"You can also have a lone hypervelocity planet, peeled away from its star and ejected from the black hole. The same mechanism that produces a hypervelocity star produces a hypervelocity planet," Ginsburg explains. "But because it is so small and traveling up to 30 million miles per hour, it cannot be seen. That doesn't mean they won't eventually be found, but currently it is beyond the limitations of our technology."

Ginsburg contends, however, that you could see a hypervelocity star ejected with planets still in tow. In this case, you might be able to see the planets as they cross in front of the star like an eclipse, appearing as a dip in its light curve. While the paper discusses the lone hypervelocity planets, it also draws attention to the planets rotating around the hypervelocity stars.

"That is something that we can detect now," Ginsburg says, "which I think makes it very interesting. As of yet nobody has looked for these planets transiting hypervelocity stars. We are telling people in this paper that you should look for these."

###


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Much faster than a speeding bullet, planets and stars escape the Milky Way [ Back to EurekAlert! ] Public release date: 29-Mar-2012
[ | E-mail | Share Share ]

Contact: Joseph Blumberg
joseph.e.blumberg@dartmouth.edu
603-646-2117
Dartmouth College

Idan Ginsburg, a graduate student in Dartmouth's Department of Physics and Astronomy, studies some of the fastest moving objects in the cosmos. When stars and their orbiting plants wander too close to the supermassive black hole at the center of the Milky Way, their encounter with the black hole's gravitational force can either capture them or eject them from the galaxy, like a slingshot, at millions of miles per hour.

Although their origin remains a mystery and although they are invisible, black holes found at galaxy centers make their presence known through the effects they have on their celestial surroundings. The Milky Way's black hole, a monster with a mass four million times that of the Sun, feeds on some of its neighbors and thrusts others out into the intergalactic void.

It's the expelled objects that "become hypervelocity planets and stars," say Ginsburg. "What we learn from these high-speed travelers has significance for our understanding of planetary formation and evolution near the central black hole."

Ginsburg, along with his doctoral adviser Professor Gary Wegner, and Harvard Professor Abraham Loeb are publishing a paper in the Monthly Notices of the Royal Astronomical Society. It describes how the team constructed computer simulations of these hypervelocity bodies as a means to understanding the dynamics involved. "The paper is a 'call to arms' for other astronomers to join the search," Ginsburg announces.

Born in Israel, Ginsburg came to the United States as a child and grew up as a Midwesterner. After high school in Lawrence, Kan., graduating from the University of Illinois at Urbana-Champaign, and studies at Harvard, Ginsburg came to Dartmouth almost five years ago.

For the origin of hypervelocity bodies, Ginsburg and his colleagues point to the close interaction of a binary star systemtwo stars orbiting a common centerwith a massive black hole. The likely scenario is the black hole draws one of the pair into its gravitational well while simultaneously ejecting the other at 1.5 million miles per hour. More than 20 of these hypervelocity stars have been identified in the Milky Way.

"You can also have a lone hypervelocity planet, peeled away from its star and ejected from the black hole. The same mechanism that produces a hypervelocity star produces a hypervelocity planet," Ginsburg explains. "But because it is so small and traveling up to 30 million miles per hour, it cannot be seen. That doesn't mean they won't eventually be found, but currently it is beyond the limitations of our technology."

Ginsburg contends, however, that you could see a hypervelocity star ejected with planets still in tow. In this case, you might be able to see the planets as they cross in front of the star like an eclipse, appearing as a dip in its light curve. While the paper discusses the lone hypervelocity planets, it also draws attention to the planets rotating around the hypervelocity stars.

"That is something that we can detect now," Ginsburg says, "which I think makes it very interesting. As of yet nobody has looked for these planets transiting hypervelocity stars. We are telling people in this paper that you should look for these."

###


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Source: http://www.eurekalert.org/pub_releases/2012-03/dc-mft032912.php

mumia mumia uss arizona memorial uss arizona memorial d day roy orbison red solo cup

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.